

Modeling the Revenue Impacts of "Flexible Interconnection" on Comunity Solar Projects

December 10, 2024

Presenters

David Gahl, Solar & Storage Industries Institute

Todd Wall, Pacific Northwest National Laboratory

Eran Schweitzer, Pacific Northwest National Laboratory

Samantha Weaver, Coalition for Community Solar Access

Flexible Interconnection Webinar SSII Technical Assistance Outcomes December 10th, 2024

An initiative spearheaded by the Solar Energy Technologies Office and the Wind Energy Technologies Office

Eran.Schweitzer@pnnl.gov

PNNL-SA-206724

Motivation & Objective

- Interconnection is a complex process that
 - Z Can run into time delays
- Accrue high costs to upgrade the system
- Flexible Interconnection (FIX) accepts some curtailment to:
 - Speed up interconnection by not waiting for upgrades to complete Avoid cost of an upgrade altogether

Objective

Conduct an economic costs and benefit evaluation of the interconnection option – curtailment – upgrade tradeoff

Methodology

- 1. Use Hosting Capacity Analysis (HCA) to develop hourly export limits
- 2. Evaluate net export and curtailment by scenario
- 3. Perform economic evaluation

Analysis Scope

This Analysis Does...

- Evaluate the economics of *specific* designs at a *single* location
- Evaluate how decisions between interconnection choices *vary* by location
- Keep the *logic* between interconnection scenarios constant
- Evaluate a threshold for upgrade costs

This Analysis Does Not...

- Compare the benefit of interconnecting a *specific* plant at one location vs. another
- Propose "optimal" solar-plusstorage design
- Keep the *designs* (i.e. ratings) between interconnection scenarios constant
- Evaluate explicit upgrade costs

Time Based Export Limits

7

Hosting Capacity Limits

- Focus on steady state thermal and voltage limits
 - Reverse flow and short circuit limits are generally more feeder specific
 - This assumption is easy to change
- At a **given location**, for **each hour**, generation is increased until a limit is reached
 - All other operations (existing DER, Storage, Voltage Regulator Controls, etc.) are held constant with respect to a base run

Limit	Explanation
Equipment thermal limits	Normal and Emergency limits cannot be violated
Static voltage limits	Maximum: 105% of nominal (e.g. 13.09 kV for 12.47 kV nominal) Minimum: 95% of nominal (e.g. 11.85 kV for 12.47 kV nominal)
Rapid Voltage Change (RVC)	The maximum nameplate capacity beyond the hosting capacity is based on a 3% RVC limit from IEEE 1547-2018*: $S_r \leq \min_t hc[t] + 0.03 \times \frac{V^2}{R_{SC} \cdot PF - X_{SC} \cdot \sqrt{1 - PF^2}} = P_{\text{flexible}}^{\text{max}}$

*The RVC definition comes from IEEE Std. 1453, but the selection of 3% as the limit is from IEEE Std. 1547. There are differing opinions on the appropriate use of RVC in hosting capacity, Table 2 represents the decision for this analysis, which could be modified in other circumstances.

Limited Generation Profiles

- Changing export limits can pose a communication and control challenge
- One solution is the use of predefined Limited Generation Profiles (LGP) as recently introduced in California*
 - Reduces hosting capacity range

All the presented analysis needs is a limit (any limit) for each hour

Base Model

10

Proposed IEEE 9500*

- Extension of the IEEE 8500 Node Test Feeder
- Large feeder with some DER already present
- Enables easy data sharing

Туре	Number of Buses	Number of Nodes
Three Phase	847	2541
Two Phase	3	6
Single Phase	1902	1902
Secondary Customer Buses	2550	5100
Total	5302	9549

Loads, Voltage Control, and DER

Feeder	No. of	Load	No. of	No. of	No. of DERs		
	Customers	kW kVAR	Regulator	Capacitor			
S_1	268	3432.6 855.9	2	2	7		
S_2	475	4803.1 1554.0	2	1	6		
S_3	532	5432.8 1355.3	2	1	2		
Total	1275	13668.5 3765.2	6	4	15		

*Anderson, Alexander A., Vadari, Subramanian V., Barr, Jonathan L., Poudel, Shiva, Dubey, Anamika, McDermott, Thomas E., and Podmore, Robin. Introducing the 9500 Node Distribution Test System to Support Advanced Power Applications: An Operations-Focused Approach. United States: N. p., 2022. Web. doi:10.2172/1922914.

Model is available on the i2X Github repository: https://github.com/pnnl/i2x/tree/master/src/i2x/models/ieee9500

Base Operations

- Load profile from EPRI, available with OpenDSS
- Solar profile (for *existing* PV) from NREL's ReVX* tool for a location close to the Hoosick area in New York state (coordinates 42.803° N, 73.375° W)
- Storage output and regulator taps from base 8760hour run
- Feeder starting point is within thermal and voltage

Scenario Analysis

13

Scenario Description

Conventional Interconnection

- Rating, P_{conventional}, equal to minimum hosting capacity
- Export is equal to the rating times the solar profile

 $P_{export}[t] = P_{conventional} \cdot pv[t]$

• Curtailment is, by definition, zero

Solar-Only Flexible Interconnection

- Rating, *P*_{flexible}, equal to 90th percentile of hosting capacity
- Export is the minimum of rating times solar profile and the hosting capacity $P_{export}[t] = \min\{P_{f|exible} \cdot pv[t], hc[t]\}$
- Curtailment is the difference between the capability and the export $P_{curtailment}[t] = P_{flexible} \cdot pv[t] - P_{export}[t]$

Solar-Plus-Storage Flexible Interconnection (solved by optimization)

- Same solar P_{flexible} . 2hr Battery rating, r_{kW} , equal to $P_{\text{flexible}} P_{\text{conventional}}$
- Net export is the solar capability *plus* battery export *minus* any charging and curtailment $P_{export}[t] = P_{flexible} \cdot pv[t] + b_{discharge}[t] - (b_{charging}[t] + P_{curtailment}[t])$

Revenues and Capital Expenditures (CAPEX)

15

Capital Cost Calculation

 Annualized capital costs based on lifetime (25 years)

$$C_{\text{annualized}} = C_{\text{total}} \times \frac{r}{1 - (1 + r)^{-n}}$$
$$C[y] = C_{\text{annualized}} + 0\&M \times (1 + s)^{y}$$

 Added ~5.5% saving for joint inverter for solar and storage

Figure 3. Cost details for utility-scale storage (4-hour duration, 240-MWh usable)

	PV	BESS	Source
CAPEX [\$/kW]	1289.51	979.97	2023 ATB*
CAPEX Inverter Savings [%]	0	5.5	2023 ATB*
Fixed O&M [\$/kW-a]	20.99	24.50	2023 ATB*
Escalation, s [%/a]	2	2	NYSERDA Value Stack Calculator**
Degradation, d [%/a]	0.5	0.5	NYSERDA Value Stack Calculator**
Discount Rate, r [%/a]	8	8	NYSERDA Value Stack Calculator**

00

*https://atb.nrel.gov/electricity/2023/index

** https://www.nyserda.ny.gov/All-Programs/NY-Sun/Contractors/Value-of-Distributed-Energy-Resources/Solar-Value-Stack-Calculator

Energy Price

- Extracted from the NYSERDA value stack calculator* with components (all in \$/kWh):
 - DRV (demand reduction value)
 - LSRV (locational system relief value)
 - Community Credit
 - System Capacity
 - Energy
 - Environmental value
- DRV is scaled by a yearly factor, f_{DRV}[y], and is therefore separated out from the rest of the value stack

Total Value Stack (without DRV)

Revenues and Opportunity Cost to NPV

 Cost of curtailment is treated as the opportunity cost of not receiving payment for possible production

NPV Assessment

19

Avoided vs. Deferred Costs

Permanent Flexible Interconnection: Avoided Upgrades

Curtailment assumed for project • lifetime:

 $NPV_{\text{curtailment}} = \sum_{y} \frac{R_{\text{curtailment}}[y]}{(1+r)^{y}}$

Upgrades that are greater than *NPV*curtailment justify FIX

Project NPV **Temporary FIX** $NPV_{curtailment}[y]$ Project lifetime

Temporary Flexible Interconnection: Deferred Upgrades

- Curtailment assumed for only some time: $NPV_{\text{curtailment}}[y] = \sum_{y' \in y} \frac{R_{\text{curtailment}}[y']}{(1+r)^{y'}}$
- Upgrades that are greater than *NPV*_{curtailment} but **below** the project NPV justify temporary FIX

Permanent Flexible Interconnection

Examples

Overview

- Three locations chosen at progressively closer points to the substation
- Different project sizes at different locations based on hosting capacity!
- Analysis with hourly hosting capacity as well as daily limited generation profile (LGP)

Hosting Capacity Results

Sizing and Operational Results

- Note:
 - differences in project size
 - As sizes converge, so do the differences in export and curtailment

24

Increasing Hosting	g Capacity
Increasing Hosting Capa	city Range

	m1027039 (farthest)						l2925506 (middle)					Substation					
	Conv.	Solar Only		Solar and Storage		Conv.	Solar	Only	Solar and Storage		Conv.	Solar Only		Solar and Storage			
	HC	НС	LGP	HC	LGP	HC	HC	LGP	HC	LGP	HC	HC	LGP	HC	LGP		
Pconventional [kW]	259					3493					23260						
Pflexible [kW]		875	470	875	470		4395	3775	4395	3775		24400	23700	24400	23700		
^r kW ^{/r} kWh [kW/kWh]				620/ 1240	210/ 420				900/ 1800	285/ 570				1000/ 2000	440/ 880		
$\sum_t P_{export}[t]$ [MWh] (% of conventional)	454	1387 (205%)	756 (176%)	1489 (228%)	803 (177%)	6119	7665 (125%)	6597 (108%)	7682 (126%)	6599 (108%)	40747	42650 (105%)	41427 (102%)	42650 (105%)	41427 (102%)		
$\sum_t P$ curtailment $[t]$ [MWh] (% of export)		143 (10%)	66 (8.7%)	41 (2.8%)	18 (2.2%)		17.6 (0.2%)	1.8 (0.0%)	0 (0%)	0 (0%)		0.8 (0.0%)	0.2 (0.0%)	0 (0.0%)	0 (0%)		

NPV Comparison to Conventional

Avoided and Deferred Upgrades*

*Shown for m1027039 only since curtailment at other two locations is so small that the NPV values are effectively 0.

Take Aways

Hosting Capacity Variability

- The higher the hosting capacity variability, the more permanent FIX (avoided upgrades) are worth while
- The lower the hosting capacity variability, the more temporary FIX (deferred upgrades) are worth while

Permanent Benefit: $(NPV_{Solar}-Only - NPV_{Conventional})$ $NPV_{Conventional}$ Temporary Benefit: $(NPV_{Solar}-Only - NPV_{Curtailment})$ $NPV_{Solar}-Only$

Storage and Uncertainty

- Permanent flexible interconnection is most valuable in weaker parts of the system with more hosting capacity variability.
- Assessment assumes a given set of profiles → single realization of uncertainty.
- Storage reduces curtailment thus improving the case for flexible interconnection
 Avoided upgrades from \$111k and up favor Solar + Storage

29

Temporary Flexible Interconnection

- In all cases, the analysis shows it better to connect and temporarily curtail rather than wait for upgrades
- Benefit increases in stronger parts of the system
- Curtailment is low \rightarrow low opportunity cost

Thank You!

Full Report: https://doi.org/10.2172/2476686 Code Available: https://github.com/pnnl/i2x

Questions